EXERCICES SUR LES SUITES

EXERCICE 1

Une personne loue un appartement à partir du 1^{er} janvier 2001.

Elle a le choix entre deux formules de contrat.

Dans les deux cas le loyer annuel initial est 4800 € et le locataire a l'intention d'occuper l'appartement pendant neuf années complètes.

1°) CONTRAT N°1

Le locataire accepte une augmentation annuelle de 5 % du loyer de l'année précédente.

- a) Calculer le loyer annuel u₂ payé lors de la 2^{ième} année
- **b)** Exprimer u_n (loyer annuel payé lors de la $n^{i\`{e}me}$ année) en fonction de n. En déduire la valeur de u_9
- **c)** Exprimer en fonction de n la somme payée à l'issue de n années de location En déduire la somme payée à l'issue de 9 années de location

2°) CONTRAT N°2

Le locataire accepte une augmentation annuelle forfaitaire de 300 € du loyer de l'année précédente.

- a) Calculer le loyer annuel v₂ payé lors de la 2^{ième} année
- **b)** Exprimer v_n (loyer annuel payé lors de la $n^{i \hat{e} m e}$ année) en fonction de n. En déduire la valeur de v_9
- **c)** Exprimer en fonction de n la somme payée à l'issue de n années de location En déduire la somme payée à l'issue de 9 années de location
- 3°) Quel est le contrat le plus avantageux pour le locataire ?

EXERCICE 2

On considère la suite (u_n) définie par $u_0 = 5$ et pour tout $n \in \mathbb{I}N$ 3 $u_{n+1} = u_n + 4$

- **1°)** Calculer u_1 et u_2 .
- **2°)** Démontrer que pour tout $n \in IN$ $u_n > 2$
- **3°)** Montrer que (u_n) est une suite décroissante.
- **4°)** Montrer que la suite (u_n) est convergente et déterminer sa limite.
- 5°) On pose, pour tout $n \in IN$ $v_n = u_n 2$ Montrer que (v_n) est une suite géométrique. En déduire l'expression de v_n en fonction de n.
- Soit $S_n = v_0 + v_1 + ... + v_n$ et $T_n = u_0 + u_1 + ... + u_n$ Déterminer l'expression de S_n , puis l'expression de T_n en fonction de n.
- **7°)** Déterminer $\lim_{n \to +\infty} S_n$ et $\lim_{n \to +\infty} T_n$

EXERCICES SUR LES SUITES

CORRECTION

EXERCICE 1

- Le loyer annuel est de 4800 € la première année. Puisqu'il subit une augmentation annuelle de 5 %, le loyer annuel u_2 payé lors de la $2^{i \text{ème}}$ année sera $u_2 = 4800 + 4800 \times 5 \% = 4800 + 4800 \times \frac{5}{100} = 4800 \left(1 + \frac{5}{100}\right) = 4800 \times 1,05 \text{ donc } \boxed{u_2 = 5040}$.
 - Chaque année le loyer annuel subit une augmentation de 5 %, c'est-à-dire qu'il est multiplié par 1,05 . On a donc pour tout n > 1 : $u_{n+1} = u_n \times 1,05$.

La suite (u_n) est donc une suite géométrique de raison 1,05 et de premier terme u_1 = 4800 .

On sait alors que pour tout n > 1 $u_n = u_1 \times (1,05)^{n-1}$.

Donc pour tout $n > 1 : u_n = 4800 \times (1,05)^{n-1}$

On a en particulier $u_9 = 4800 \times (1,05)^8$ donc $u_9 \approx 7091,79$.

La somme payée à l'issue de n années de location est égale à la somme des loyers annuels des n années, c'est-à-dire $u_1 + u_2 + ... + u_n$

La suite (u_n) étant géométrique de raison 1,05 on sait que :

$$u_1 + u_2 + ... + u_n = u_1 \times \frac{1 - (1,05)^n}{1 - 1,05}$$
 donc $u_1 + u_2 + ... + u_n = 4800 \times \frac{1 - (1,05)^n}{1 - 1,05}$ pour tout $n > 1$
On obtient $u_1 + u_2 + ... + u_9 \approx 52$ 927,51.

- Le loyer annuel est de $4800 \in$ la première année. Puisqu'il subit une augmentation forfaitaire de $300 \in$, le loyer annuel v_2 payé lors de la $2^{ième}$ année sera $v_2 = 4800 + 300$ donc $v_2 = 5100$.
 - **b)** Chaque année le loyer annuel subit une augmentation forfaitaire de 300 €.

On a donc pour tout n > 1: $v_{n+1} = v_n + 300$.

La suite (v_n) est donc une suite arithmétique de raison 300 et de premier terme v_1 = 4800.

On sait alors que pour tout n > 1 $v_n = v_1 + (n-1) \times 300$.

Donc pour tout
$$n > 1$$
: $v_n = 4800 + (n-1) \times 300$

On a en particulier $v_9 = 4800 + 8 \times 300$ donc $v_9 = 7200$

EXERCICE 2

(u_n) est définie par $\ u_0=5$ et pour tout $n\in IN$ 3 $u_{n+1}=u_n+4$

- On a $3 u_1 = u_0 + 4$ donc $3 u_1 = 5 + 4 = 9$ donc $u_1 = 3$ et $3 u_2 = u_1 + 4 = 3 + 4 = 7$ donc $u_2 = \frac{7}{3}$
- **2°)** On considère, pour tout $n \in \mathbb{I}N$, la proposition $P_n : u_n > 2$

On a $u_0 = 5$ donc $u_0 > 2$, donc P_0 est vraie.

Supposons que \boldsymbol{P}_k est vraie pour un entier $k \geq 0$.

On a alors $u_k > 2$ donc $u_k + 4 > 6$ donc $3 u_{k+1} > 6$ donc $u_{k+1} > 2$

(on peut diviser par 3 car 3 > 0)

c'est-à-dire que P_{k+1} est vraie.

On a donc démontré par récurrence que P_n est vraie pour tout n > 0.

EXERCICES SUR LES SUITES

Conclusion : P_n est héréditaire, et est vraie au rang 0 donc $u_n > 2$ pour tout $n \in IN$.

3°) On a pour tout
$$n \in IN$$
 3 $u_{n+1} = u_n + 4$, donc $u_{n+1} = \frac{u_n + 4}{3}$

Donc
$$u_{n+1} - u_n = \frac{u_n + 4}{3} - u_n = \frac{u_n + 4 - 3u_n}{3} = \frac{-2u_n + 4}{3}$$

On a vu dans la question précédente que $u_n > 2$ pour tout $n \in IN$, donc $2 u_n > 4$, donc $0 > -2 u_n + 4$

On en déduit que $u_{n+1} - u_n > 0$ pour tout $n \in N$, c'est-à-dire que la suite (u_n) est décroissante

 $\underline{\textit{Remarque}}$: on peut aussi démontrer que (u_n) est décroissante en démontrant par récurrence que $u_{n+1} > u_n$ pour tout $n \in IN$.

Soit I =
$$\lim_{n \to +\infty} u_n$$
 on a aussi I = $\lim_{n \to +\infty} u_{n+1}$

Sachant que 3
$$u_{n+1}=u_n+4$$
, on a $3\lim_{n\to +\infty}u_{n+1}=\lim_{n\to +\infty}u_n+4$ donc 3 $I=I+4$, c'est-à-dire 2 $I=4$

donc I = 2 c'est-à-dire
$$\lim_{n \to +\infty} u_n = 2$$
.

5°) Pour tout
$$n \in IN$$
, on a $v_n = u_n - 2$

donc
$$v_{n+1} = u_{n+1} - 2 = \frac{u_n + 4}{3} - 2 = \frac{u_n + 4 - 6}{3} = \frac{u_n - 2}{3} = \frac{v_n}{3}$$

On a donc
$$v_{n+1} = \frac{1}{3}v_n$$
 pour tout $n \in IN$.

La suite (v_n) est donc une suite géométrique de raison $\frac{1}{3}$.

(v_n) étant une suite géométrique de raison $\frac{1}{3}$, on sait que pour tout $n \in \mathbb{I}N$ $v_n = v_0 \times \left(\frac{1}{3}\right)^n$

Avec $v_0 = u_0 - 2 = 5 - 2 = 3$, on a donc $v_n = 3 \times (\frac{1}{3})^n$ pour tout $n \in IN$.

6°)
$$S_n = v_0 + v_1 + ... + v_n$$

 S_n est donc la somme des n+1 premiers termes de la suite géométrique (v_n)

On sait alors que
$$S_n = v_0 \times \frac{1 - \left(\frac{1}{3}\right)^{n+1}}{1 - \frac{1}{3}}$$
 donc $S_n = 3 \times \frac{1 - \left(\frac{1}{3}\right)^{n+1}}{\frac{2}{3}}$

On obtient alors $S_n = \frac{9}{2} \left(1 - \frac{1}{3^{n+1}} \right)$ pour tout $n \in IN$.

$$T_{n} = u_{0} + u_{1} + ... + u_{n} = \ (\ v_{0} + 2\) + (\ v_{1} + 2\) + ... + (\ v_{n} + 2\) = v_{0} + v_{1} + ... + v_{n} + 2\ (\ n + 1\)$$

Donc
$$T_n = S_n + 2 (n + 1)$$
 donc $T_n = \frac{9}{2} \left(1 - \frac{1}{3^{n+1}} \right) + 2(n + 1)$ pour tout $n \hat{I} IN$.

7°) On sait que
$$\lim_{n \to +\infty} \left(\frac{1}{3}\right)^n = 0$$
 parce que $-1 < \frac{1}{3} < 1$.

On en déduit que
$$\lim_{n \to +\infty} \left(\frac{1}{3}\right)^{n+1} = 0$$
 donc $\lim_{n \to +\infty} 1 - \frac{1}{3^{n+1}} = 1$ donc $\lim_{n \to +\infty} S_n = \frac{9}{2}$

D'autre part
$$\lim_{n \to +\infty} 2 (n + 1) = +\infty$$
 donc $\lim_{n \to +\infty} T_n = +\infty$